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Coupling, competition, and stability of modes in random lasers
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We studied analytically and numerically the complex properties of random lasing modes. Mode repulsion in
frequency domain for inhomogeneously broadened gain media was confirmed by our numerical results. We
constructed a coupled-mode model to explain the synchronized lasing behavior for modes whose frequency
difference is less than the homogeneous gain width. The stability of coupled modes was investigated. The
effective competition coefficientCe for two modes with both gain competition and field coupling is obtained
analytically. In our numerical experiments, we also found the coupled oscillations of two lasing modes. From
the analytical derivation, we demonstrated that such oscillations could reveal the field-coupling strength be-
tween the random modes.
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I. INTRODUCTION

Over the past decade, random lasers received much a
tion of both theoretical and experimental groups.1–18 In ad-
dition to many potential applications, the study of rando
lasers is important from the fundamental physics point
view. It bridges two basic physics branches, laser phy
~electromagnetic waves in gain systems! and Anderson local-
ization~wave propagation in random systems!. Random laser
not only becomes a new member of laser family,1,2 but also
provides a new path to study localization phenomena.6,8 Un-
like the conventional lasers, the modes of random lasers
formed by random scattering instead of designed reflect
Because random lasing modes come from the eigenstat
disordered systems,6 they open a special door to study th
interplay between localization and amplification.15

Although random lasing modes have been studied2,5,6,8

and the interaction between them been observed,5,8 a detailed
theoretical study is still missing. The interaction between
random lasing modes provides us a rare chance to quan
tively study the properties of random modes. The inform
tion obtained from the studies can reveal the fundame
specialty of random lasers. We know it is hard to extract s
detailed information from the transport studies of pass
random systems for following reasons;~i! The physical
quantities in the transport measurement, such as trans
sion, reflection, and density of states, areaveraged over
many modes of the random systems;~ii ! it is very difficult to
excite the modes deepinside a random system with an op
tical field incident from outside. Other reasons, such as
short lifetime of excited random modes, also make the
perimental and theoretical study difficult. These difficultie
however, can be avoided in random lasers. First of all, on
few modes lase, thus the interaction between them is
averaged anymore. Second, the modes inside the ran
system can be excited, for example, by electric pumpi
Finally, the pumping parameters, such as the strength,
0163-1829/2004/69~10!/104202~7!/$22.50 69 1042
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time length, and the spatial area, can be controlled, so
excited mode can survive enough time length for observ
the interaction between the lasing modes. Real and nume
experiments show that the interactions between random
ing modes could be observed, e.g., the mode repulsion in
space and spectral domain, the complex dynamic proce
of coupled modes.5,8

The interaction between random modes in active rand
media can be separated into two kinds.

~i! Direct coupling of electromagnetic~EM! field between
modes, such as the field leaked from one lasing mode ca
absorbed by other modes. Because of the finite size of
dom lasing systems, the eigenfrequency of a mode~strictly
should be called quasimode! is a complex number, whos
imaginary part describes the decay rate. Because the ei
frequencies are complex values, the eigenmodes are no
thogonal to each other. This leads to a linear field coupl
between the modes~quasimodes!. Such mode coupling could
be strong if two modes are spatially and spectrally close
each other.

~ii ! Competition of gain between modes which are sp
tially overlapped, also called cross saturation in laser ph
ics. The process can be explained as that the local deple
excited electrons by one lasing mode will suppress ot
mode to lase.

The physics importance of these two kinds of interact
between modes are obvious. Because the coupling betw
the random modes can tell us how the field leaks from o
mode to another one, it is related to the propagation chan
of EM field in random system. Hence, a clear physical p
ture of such coupling is essential for understanding wa
localization. The competition of gain is related to the loc
interaction of the EM field with excited electrons~or other
active particles!. Such competition can be regarded as
indirect interaction between random modes through the
tive media. For two modes that are close in frequency an
space, the coupling and competition could be strong. S
©2004 The American Physical Society02-1
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interactions may strongly change the properties of las
modes, e.g., they influence which mode would lase, the
namic behavior of the lasing modes, the spectral propert
random laser, etc. A theoretical study of mode interacti
would allow us to understand thoroughly the physics beh
random lasing phenomena.

In our theoretical discussion, reabsorption and reemiss
of photons are ignored with the approximation that the el
tronic lifetime at lower-lasing level is very short. Because t
photons from one lasing mode can be reabsorbed by e
trons at lower-lasing level and reexcited electrons can e
photons into other modes, so the process will cause an e
coupling between modes. But in our four-level electron
model, if the lifetime of lower-lasing level is very short~it is
true generally!, such effects could be very weak.

Recently, some experimental results8 have shown the
complex behaviors of random lasing modes when there
coupling and competition between them in inhomogene
active media. We know, that the gain competition of mod
in homogeneously broadened gain material causes the m
spatially to repel each other and their distance is relate
the localization length if the frequency is in the localiz
regime. This was first predicted theoretically,5 then observed
experimentally.17 But the inhomogeneous broadening of ga
material adds one more dimension to mode competition.
cause in inhomogeneous gain material, the active atoms
separated into several subgroups. The gain of each subg
is homogeneous and is centered around a certain freque
The central frequencies of all subgroups are evenly dist
uted in frequency domain, but the weights of different su
groups are different. Such subgroups~the source of inhomo-
geneous broadening! in real material could be caused b
many physical effects, such as the Doppler effect of the
cited gas atoms or the nearly degenerated energy leve
dye molecules. So the mode competition of gain exists
only in spatial domain, but also in spectral domain~different
subgroups!. In the experiments,8 the gain material
~rhodamine 640 dye in glassy host! was inhomogeneously
broadened, and only asmall area~smaller than the typica
mode size! was pumped. Thus all lasing modes should
spatially overlapped. In other words, the strong spatial co
petition is locked in the experimental condition, so that on
one mode would lase and suppress all others if the gain
homogeneous. The experimentally observed coexistenc
lasing modes can only be explained by the fact that the
homogeneous broadening of gain gives them a new dim
sion ~subgroups! to survive~lase simultaneously!. At a high
pumping intensity~when a single subgroup can support
lasing mode!, lasing modes are found to be regularly spac
in frequency. That is an indication of mode repulsion in t
spectral domain. Every lasing mode depletes only a subgr
of excited molecules. Each subgroup of excited molecu
could be regarded as a homogeneously broadened
source at certain frequency, and it can only support one
ing mode around that frequency. The frequency spacing
lasing modes corresponds to the homogeneous linewidt
the subgroup molecules. We will see that such phenom
really also appear in our numerical simulation in a simi
condition.
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Despite the fact that most lasing modes are spectr
separated in the random laser with inhomogeneously bro
ened gain spectrum, two special cases are found experim
tally. One is the observation of two lasing modes whose f
quency spacing is less than the homogeneous linewidth
the gain material. Their field strengths are similar. The te
poral measurement reveals that the evolution of these
modes is synchronized, i.e., lasing starts and stops at
same time. This obviously tells us that there exists anot
mechanism which can balance the mode competition. T
mechanism is the field coupling between the two mod
namely, the EM field leaked from one mode is absorbed
another. When the frequencies of two modes are close, t
coupling could be very strong. The other case is that t
modes close in frequency are coupled, but their fi
strengths are quite different. Their lasing period is differe
The stronger mode~called main mode! lases longer than the
weaker one~called side mode!. Both phenomena are als
observed in the random laser with homogeneously broade
gain spectrum.

In our numerical simulations, we found additional ph
nomena and dynamic processes of coupled modes tha
not observed experimentally. For example, we observed
coupled oscillations of two strongly coupled random mod
To explain all these results, we need a theoretical mode
this paper, we presented quantitative treatment of these
nomena by semiclassical laser theories.19,20 Due to the com-
plexity of the active random systems, we have to make so
approximation, which will be discussed in the later sectio
Our goal is to find the physical mechanisms behind all
phenomena described earlier. This paper is organized as
lows. Section II contains the numerical results of mode
pulsion in frequency domain of inhomogeneously broade
random laser. Based on the solution to the coupled fi
equations of two modes, we give the theoretical explana
of synchronized lasing behavior of two coupled modes.
Sec. III, stability of two gain-competed and field-couple
modes is studied with rate equations. The criterion of sta
ity is presented. Section IV focuses on the coupled relaxa
oscillations of two strongly coupled lasing modes. Theore
cally, we find that the frequencies of such oscillations rev
the coupling strength between the random modes. In Sec
we summarize the results and emphasize the importanc
studying the random lasing modes.

II. MODE REPULSION AND SYNCHRONIZED LASING

First we checked the experimental observation of mo
repulsion in frequency domain of inhomogeneously bro
ened gain material by our numerical simulation. The inh
mogeneously broadened gain spectrum was constructed
numerous homogeneous lines. The inhomogeneous linew
is 150 THz, 30 times of the homogeneous linewidthDv
55 THz.5,12 The Maxwell’s equations are coupled to th
rate equations of electronic populations. Temporal evolut
of the electromagnetic field is calculated with the finite d
ference time domain method. The lasing spectrum is
tained by Fourier transform. For simplicity, we calculat
one-dimensional~1D! random lasers which could revea
2-2
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COUPLING, COMPETITION, AND STABILITY OF . . . PHYSICAL REVIEW B 69, 104202 ~2004!
qualitative properties of 2D and 3D random lasers. The
haviors of 2D and 3D random lasers are qualitatively
same. Our 1D random system is made of binary layers w
dielectric constantse152.5 ande255.29. The layer thick-
nessa5a0(11Wag), b5b0(11Wbg), wherea0548 nm,
Wa50, b0580 nm, Wb50.2, g is a random value in the
range@21,1#. The system consists of 700 pairs of bina
layers, the system length;100 mm. Only the central part of
the system with length 30mm is pumped. Due to the wea
randomness, the modes are spatially extended. Thus the
ing modes must overlap with each other and compete for
gain. At high pumping rate, the lasing modes are alm
regularly spaced in frequency as shown in Fig. 1. We a
repeated the calculation of similar systems with different
rameters, and found that the regular spacing of lasing pe
is a common feature of the lasing spectra. The freque
separation of neighboring lasing modes is about 7 T
which is a little smaller than the theoretical value 2Dv
510 THz.21 We note that the frequency spacing betwe
adjacent lasing modes is much larger than the average
quency spacing between eigenmodes in the random syst
This indicates that lasing in most eigenstates is suppre
because their frequencies are too close to one of the la
modes which has depleted the gain in one subgroup of
cited molecules. Cross saturation of gain allows only o
mode to lase within a homogeneous line of the gain mate

However, we do observe two kinds of exceptions as
experiments. Next we will focus on the first kind. We o
serve that two lasing modes are spatially overlapped and
frequency separation between them is less than the hom
neous linewidth. Thus they should interact with the sa
subgroup of excited molecules, and the gain competit
would suppress lasing in one of them if there were no ot
interaction. The facts that they lase simultaneously and t
field strengths are similar suggest that there must be a
tional interactions between them. This additional interact
is the field coupling between the modes. It also exists

FIG. 1. Numerically calculated lasing spectrum at the pump
rate ofPr513107 s21 of a 1D random laser system with inhomo
geneous gain material. Almost regularly spaced peaks are sho
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modes of random lasers with homogeneously broadened
spectrum.

Numerically, we simulated such phenomena in a homo
neous gain system. The 1D random system consists of
pairs of binary layers with the randomnessWa50.1 and
Wb50.6. The small system size allowed us to calcul
many random configurations and find one with two coup
modes. The pumping process starts att50 and stops att
515 ps. At a pumping ratePr543106 s21, the spectrum
has two lasing peaks with frequency separation 0.8 T
Figure 2 shows the temporal evolution of the amplitude
the electric fieldAE for these two lasing modes. Laser puls
in these two modes rise at the same time. The pulse dura
is nearly identical. These results agree with the experime
data.

The next question is whether such synchronized las
modes can be obtained in theoretical analysis. Our answ
yes. Because the system, including the EM fields and e
tron populations for two modes, is complex, we would e
up with a large number of coupled differential equations
we do not make any approximation or simplification. Stric
speaking, when two modes are close in frequency, the
field equations should be used to explain the detailed c
pling and competition between them. For the field equatio
we separate the space and time variables, and assum
equations for the spatial part are solved. The eigenmodes
eigenfrequencies are already obtained. We only need to s
the time-dependent part. With the field equations for mod
we can get the instantaneous interaction between the mo
However, the field equations~even scalar field equations!
could be too hard to solve sometimes, especially when t
are coupled with the rate equations for electrons. In this
per, we will use the scalar field equations to study the s
chronization of two coupled lasing modes, but use the p
ton rate equations to investigate their stabilities. Su
simplification is reasonable because the synchronizatio
related to the phases of mode oscillations which could o
be studied with the field equations, while the stability is t
time-averaged behavior of the lasing modes. These meth

g

.

FIG. 2. The field amplitudesAE of two lasing modes vs timet.
The synchronized lasing of two modes are shown.
2-3



e
a

th

a
in

w

e

th
th
th
e
ra

ch
th

e
r-
e

he
e

n
n

on

al
e
tru

-
is
ct
n
o

ing
the
re-
en

on
to

ds a

an
ther,

u-
be

vide
ed

tain
e

-

-

r

ll

e-
here

ss

.

flow

ower
ergy

JIANG, FENG, SOUKOULIS, ZI, JOANNOPOULOS, AND CAO PHYSICAL REVIEW B69, 104202 ~2004!
are commonly used in the laser physics21 when the dynamic
processes are studied.

Let us consider two modesA andB. Their frequenciesvA
and vB are close, and they are spatially overlapped. Th
quality factors are slightly different. The coupled field equ
tions are

d2Ei~ t !

dt2
1g i

dEi~ t !

dt
1v i

2Ei~ t !

52
1

«

d2Pi~ t !

dt2
1g i j S Vj

Vi
D 1/2dEj~ t !

dt
. ~1!

The subscripti , j can be 1~for modeA) or 2 ~for modeB).
Ei(t) is the electric field. The polarizationP(t) i can be sepa-
rated into two parts:Pi(t)5«0(x81 ix9)Ei(t), the imagi-
nary part is the source of optical gain.v i is the eigenfre-
quency of the passive system.Vi is the spatial volume of the
mode;« is the average dielectric constant.g i5v i /Qi is the
decay rate of the cavity, whereQi is the quality factor.g i j is
the field-coupling constant, and it can be expressed in
form g i j 5Gi j /C, whereGi j is the external-sourceconduc-
tivity andC is thecapacityin the effective circuit model.

Equation ~1! is widely used in the dynamic study of
laser cavity with external source. Generally, the coupl
constantg i j is proportional to*Ei(x)Ej (x)dx which in-
cludes both spatial and spectral overlap information of t
modes. In the random laser, if the modes are localized,E1
}expux2x1u/j1 andE2}exp(2ux2x2u)/j2. Theng i j represents
the overlap of the tails of the two localized states. Its valu
proportional to exp(2ux22x1u/j), wherej is the larger one in
j1 and j2 . Hence, the coupling can be neglected when
spatial distance between the two modes is much larger
j1 . In other words, the coupling constant is a parameter
reveals the spatial overlap of the localized states. If the c
tral frequencies of two modes are far away, the integ
*Ei(x)Ej (x)dx is almost zero; but if they are near to ea
other so that the spectral distance is comparable with
widths of peaks~the tails of peaks are overlapped! the cou-
pling constant could be large enough to have physical
fects. The last term in Eq.~1! can be thought of as an exte
nal force to the modei. The coupling effect depends on th
frequency difference between the two modes too. Only w
the frequencyv j of the external force is close to the mod
eigenfrequencyv i ~in resonance!, the effect of external force
is dramatically enlarged. Both conditions, being spatially a
spectrally close to each other, are needed for the stro
coupling effect. On the other hand, it is known in Anders
localization theory that such frequency-close modesshould
be spatially separated far away so that they are orthogon
each other. How canboth conditions be satisfied? As w
discussed above, the orthogonality of localized modes is
for infinite-long random passive systems~cold cavities!, but
in our realfinite randomactive systems, there are two rea
sons for modes to overcome the orthogonality and sat
both conditions. First, the modes in a finite system are a
ally quasimodes; two quasimodes are not strictly orthogo
to each other because their resonant spectral peaks are
10420
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lapped at tails. We can think that such two localized las
modes are two cavities connected by a small window. If
window is not large, two lasing modes and their lasing f
quencies are still well defined. Actually, the distance betwe
two coupled modes is a little larger than the localizati
lengths of the modes, but the coupling is strong enough
generate physical effects. Second, the saturable gain ad
small nonlinear part@a complex value, seeP in Eq. ~1!# to
the dielectric coefficient. Such an active nonlinearity c
make two orthogonal passive modes to couple to each o
and can lead to more complicated behaviors~i.e., the phase
lock! if its value is large enough. In our numerical config
rations, the strong-coupling phenomena are pretty rare to
observed, just as those in experiments.2 Next we will see that
the coupling effects are observable, and such effects pro
a different way to study the interaction between localiz
modes in real finite systems.

The general solutions of coupled Eq.~1! are very hard to
obtain, but we can get approximate solutions under cer
conditions. To simplify our derivation we need to make som
approximations.~i! We neglect the gain saturation effect;~ii !
we assume the quality factors of modesA andB are not very
different; ~iii ! we assume modeA reaches the lasing thresh
old first and its field is much stronger than that of modeB, so
that the field output from modeA influences modeB, but the
reverse influence of modeB on modeA is weak and ignored.
After the pumping starts, modeA reaches the lasing thresh
old first. The field of modeA increases quickly,E1} f (t)
@ f (t) is an exponentially growing function if modeA does
not interact with modeB]. Meanwhile, modeB is close to
~but still below! the lasing threshold. The field equation fo
modeB is similar to that of a driven oscillator:

d2E2~ t !

dt2
1g28

dE2~ t !

dt
1v2

8 E2~ t !

52g12S Va

V2
D 1/2

~ iva!E1
0f ~ t !exp~2 iv1t !. ~2!

g285g22(«0 /«)v2
2x9 is the total loss which is very sma

because modeB is near threshold.v28 is the frequency of
modeB when we include the pulling effect of the gain m
dium. Because frequencies of the two modes are close, t
is resonant absorption of the field from modeA by modeB.
Suppose thatf (t) changes much slower in the lasing proce
of mode B, because the energy of modeA is absorbed by
modeB resonantly. The solution to Eq.~2! has the form22

E2~ t !;g12S V1

V2
D 1/2

t f ~ t !. ~3!

The factor proportional to timet is from resonant absorption
We can see that the field of modeB can increasefaster than
that of modeA although modeB lases after modeA. We need
to point out that at resonance, the instantaneous energy
direction is determined by the phase of the EM field~i.e.,
whether it does positive or negative work in a period!, not by
the field strength. Because the phase change could be sl
than the field strength change, there could be a net en
2-4
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flow from modeA to modeB even when the field strength o
modeB is the same as modeA. This can explain our numeri
cal result that the field of the later lasing mode can be str
ger than that of the first lasing mode in the cobuildup p
cess. The process also can be understood as that moA
provides additional pumping to modeB ~while modeB re-
sults in additional loss of modeA). The net energy flow from
modeA to modeB through photon hopping accelerates t
lasing process in modeB. If the quality factors of the two
modes are not very different, modeB will start to lase and its
field strength may even catch up with that of modeA while
mode A still builds up. That is why we observe the tw
modes lase almost at the same time. Similarly, when
pumping stops, the mode that decays faster will resona
absorb energy from the slower decaying one. Then
former’s decay is slowed down while the latter’s decay b
comes faster. As a result, the two modes stop lasing at
same time too, as shown in Fig. 2.

Finally, we give some explanation of the second kind
coupled modes. In the second kind, one mode has m
higher quality factor than the other. They are called the m
mode and the side mode. The side mode is observable in
spectrum because of an enhanced effect. When the differ
between the main mode frequencyvm and the side mode
frequencyvs is equal to the relaxation-oscillation frequen
vsp of the main mode, the EM field of the side is grea
enhanced. This is another kind of resonance effect, and it
be derived from the photon rate equations including the g
saturation. Because this effect has been well studied in l
physics,19 we will not discuss the details here.

III. STABILITY OF TWO COUPLED-COMPETING
RANDOM MODES

Our numerical study indicates that the lasing of tw
modes, which are spatially overlapped and close in
quency, can be stable. In principle, when two modes
spatially overlapped the gain competition would allow on
one mode to lase. However, in the presence of field coup
between the two modes, second mode could start las
How both modes can be stable in the lasing process is s
question. To confirm our numerical results, we need theo
ical derivation to understand the stability of these rand
lasing modes. To simplify our derivation, we solved the ph
ton rate equations. We denoted the two modesA andB with
the subnotes 1 and 2:

dn1

dt
5

gg1n1

11k11n11k12n2
2g18n11g128 ~n22n1! ~4!

.gg1n1~12k11n12k12n2!2g18n11g128 ~n22n1!,
~5!

dn2

dt
5

gg2n2

11k22n21k21n1
2g28n21g218 ~n12n2! ~6!

.gg2n2~12k22n21k21n1!2g28n22g218 ~n12n2!.
~7!
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gg1 is amplification rate of modeA. g18 is the field damping
rate of modeA caused by leakage to the environment a
other modes except modeB. g128 is the spatial-temporal av
erage of the coupling constant between modesA andB. k11
is self-saturation parameter of modeA, and k12 is cross-
saturation parameter which includes the information of g
competition. We have similar definition ofgg2 , g28 , g218 ,
k11, andk21 for modeB. We make two approximations:~i!
the self-saturation and cross-saturation effects are weak~ii !
the photon hopping current is determined by the differen
of photon density. The first approximation is widely used
the laser systems. For the second one, as we discussed a
the field coupling of two modes by photon hopping could
more complex if the resonance effect is included. Howev
we can suppose this is the averaged effect over a time in
val that is much longer than the period of the field.

The physical meaning of cross saturation could be m
complex in a random laser than in a conventional laser. If
randomness is very weak~the system is almost homogeneo
one!, the gain saturation results in the grating effect. T
cross-saturation parameterk i j could be much larger when
the frequencies of two modes are close. In general case
random lasers whose dielectric randomness is much la
than the grating effect~the grating effect will not change th
distribution of mode field much!, k i j is
}* uEj (x)u2uEi(x)u2dx. Very different fromg i j , k21 is pro-
portional to the overlap ofintensityof modes, so it is almos
independent of the frequency difference between modes
the modes are localized states, the value ofk i j will strongly
depend on the distance between the centers of the
modes.

Following the original notations in laser physics,20 we can
rewrite Eqs.~5! and ~7! as

dn1

dt
5Fa12b1n12S u122

g218

n1
Dn2Gn1 , ~8!

dn2

dt
5Fa22b2n22S u212

g128

n2
Dn1Gn2 . ~9!

a i5ggi2g i82g i j , b i5ggik i i , u i j 5ggik i j . If we set the
right sides of the above equations to be zero, we obtain
‘‘zero-gain’’ curves for the two modes in then1 vs n2 plane.
We can see from Eqs.~8! and ~9! that the coupling terms
change the zero-gain curves for the two modes from stra
lines to hyperbolic lines. To show the effect of mode co
pling on the stability of competing modes, we choose
following parameters:a151.1, b150.4, u1250.8, a2

50.9, b250.3, u2150.7, g128 5g218 50.35. The zero-gain
curves are plotted in Fig. 3. First we set the field-coupli
termsg i j8 50, i.e., no coupling of modes. The zero-gain lin
for the two modes should be straight lines, which are sho
by the dotted lines in Fig. 3. The gain-competition fact
which is defined asC5u12u21/b1b2.1 is shown in Fig. 3
by the angleAWB larger thanp from original side. So that
the two modes cannot be stable simultaneously. Only
mode, either modeA ~at point A in Fig. 3! or modeB ~at
point B in Fig. 3!, can lase. Next the field-coupling terms a
2-5
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turned on. In the presence of field coupling, the effect
competition parameter near the crossing point of two hyp
bolic lines is

Ce5~u122g128 /n1!~u212g218 /n2!/b1b2 . ~10!

The value ofCe could be smaller than 1 whileC is larger
than 1. As shown in Fig. 3, the angle~from original side!
around the cross pointW8 is smaller thanp. Then the two
modes can be stable, i.e., both modes lase.

The above derivation shows that the stability for two la
ing modes depends on the value of their effective comp
tion factorCe at the crossing point, larger or smaller than
The next question is the following: how can the two mod
reach the crossing point of their zero-gain curves? In ot
words, how can the two modes reach their stable work
condition? As we discussed in the preceding section,
resonance absorbing of the energy between the two m
can help them get to the stable lasing condition. If the eff
tive competition factorCe,1 both modes can be stable s
multaneously, ifCe.1 one mode will be suppressed. W
note that the effective competition parameterCe depends on
the mode-coupling parameters, thus the abnormal stabilit
random lasing modes is a representation of mode-coup
effect.

IV. RELAXATION OSCILLATIONS OF STRONGLY
COUPLED MODES

In our numerical study, we also observed the coupled
cillations of two modes. The configuration in the central p
of the 1D random system is kept the same as that used in
study of synchronized lasing in Sec. III. We add ten pairs
binary layers at each end of the system. The pumping tim
increased from 15 ps to 25 ps. Thus the coupled modes
almost the same as in Sec. III, but their quality factors
larger and their lasing time should be longer. Tracking th
field amplitudes in time, we can clearly see the coupled

FIG. 3. Zero-gain curves to show the stable property of t
modes with iZnteraction. The solid lines are the zero-gain cur
for two modes in the presence of both gain competition and fi
coupling. The dotted lines are the zero-gain curves without fi
coupling.
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cillations of the two modes. The phases of their oscillatio
are p different. The numerical results are shown in Fig.
These coupled oscillations are related to the electronic
tem; namely, the electronic populations also oscillate.
each mode, the phase of electronic oscillation is almosp
different from the oscillation of the field.

To explain this complex photon-electron dynamic proce
we need to solve the coupled equations for the EM fields
electronic populations of the two modes. The solutions
complicated and provide little physical insight. Next, we w
first present a qualitative understanding and then a simpli
model. We argue that the oscillations result from strong c
pling of two modes. Without coupling, the relaxation of ea
mode could cause the field and population oscillate indep
dently. When two modes are strongly coupled, their ori
nally independent relaxation oscillations can be coupled
generate new oscillations. With this understanding, we u
the model of coupled oscillators:

]2n1

]t2
1g1

]n1

]t
1vo1

2 n15j12n2 , ~11!

]2n2

]t2
1g2

]n2

]t
1vo1

2 n25j21n1 , ~12!

whereg1 andg2 are the damping rates near the stable wo
ing condition,vo1 andvo2 are the relaxation-oscillation fre
quencies of two modes without coupling.j12 and j21 are
coupling constants which we will explain later.

For the random systems we studied numerically,
damping rates are small, thus the damping terms can be
glected. We obtain the oscillation-frequencies of tw
strongly coupled modes:

v6
2 5

v1
21v2

2

2
6AS v1

21v2
2

2 D 2

2v1
2v2

21j12j21. ~13!

s
d
d FIG. 4. The coupled oscillations of two lasing modes. Both fie
magnitudesAE and electron population inversionsDN near the two
modes’ centers are shown.
2-6
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If vo15vo25vo0 and j125j215j, the frequencies of two
coupled modes arev65Avo0

2 6j. We see that there shoul
be two eigenoscillations of the coupled modes. One is
oscillation, the other is slow oscillation. In our case, the sl
oscillation frequency is very small compared to the fast o
This meansj.vo0

2 . Thus the fast oscillation is what w
observed in our numerical experiment. The oscillation f
quency v1.A2j. From the eigenoscillation functions o
(n1 ,n2)T, we confirm that the fast oscillation corresponds
the two oscillators which havep phase difference. After
comparing Eqs.~13! and ~1!, the physical meaning ofj is
clear:j5vo0g12. Finally we get

v5A2vo0g12. ~14!

The above result@or the more general one in Eq.~13!# tells
us that the coupling strengthg12 between random lasing
modes can be extracted from the measurement of
coupled-oscillation frequencies. This is a different method
measure the coupling strength of random modes inside
disordered systems.

V. SUMMARY

In summary, we have studied the interactions betw
random lasing modes. Despite the fact that some phenom
such as gain competition, have been observed in con
tional laser systems, in random lasers they are still of imp
tance, because they reveal the properties of random mod
the systems. The gain competition of random lasing mode
frequency domain is numerically confirmed for random
a

.H

.H

.

ev

s.

ev
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sers with inhomogeneously broadened gain spectra. For
tially overlapped lasing modes, gain competition results
their repulsion in frequency. Numerical results and analyti
derivation reveal the effect of field coupling on random la
ing modes. The synchronized lasing of two coupled mode
explained with the field equations. The stability of fiel
coupled gain-competing random modes is discussed b
on the photon rate equations. The criterion of stability
derived, and its relation to the coupling strength is revea
Moreover, the coupled oscillation of two strongly couple
modes is observed in our numerical simulation. A simplifi
mode based on coupled-oscillators illustrates that the
quency of the coupled relaxation oscillation depends on
coupling strength. This discovery provides a differe
method of measuring the coupling strength of rand
modes. Since the properties of random modes directly af
light transport in disordered systems, the parameters we
tained from the random laser study, e.g., the coupling
cross-saturation parameters of random modes, facilitate
ther quantitative studies. Although the lasing modes rep
sent only a special subset of eigenmodes in a random sys
the understanding of their complex behaviors opens a n
window for fully understanding disordered systems.
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